tg-me.com/ds_interview_lib/330
Last Update:
Как можно визуализировать многомерные данные в 2D?
Существует несколько методов. Вот наиболее распространённые:
▪️Метод главных компонент (PCA)
Позволяет не только понизить размерность, но выявить наиболее информативные признаки в данных. Его суть заключается в предположении о линейности отношений данных и их проекции на подпространство ортогональных векторов, в которых дисперсия будет максимальной. Такие вектора называются главными компонентами и они определяют направления наибольшей изменчивости (информативности) данных. Именно эти главные компоненты можно визуализировать в 2D.
▫️Стохастическое вложение соседей с t-распределением (t-SNE)
Это техника нелинейного снижения размерности, хорошо подходящая для вложения данных высокой размерности для визуализации в пространство низкой размерности (двух- или трёхмерное). Метод моделирует каждый объект высокой размерности двух- или трёхмерной точкой таким образом, что похожие объекты моделируются близко расположенными точками, а непохожие точки моделируются точками, далеко друг от друга отстоящими.
#предобработка_данных
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
Share with your friend now:
tg-me.com/ds_interview_lib/330